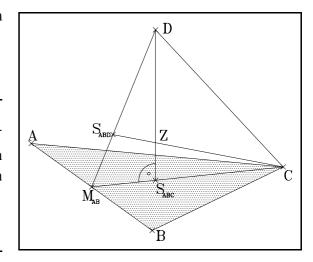
In einem dreidimensionalen affinen Raum mit zugehörigem Vektorraum sind folgende Punkte gegeben:

$$A(3|-2|4); B(-1|1|-1); C(2|5|4); D(6|2|-1)$$

a) Bestimmen Sie den Schnittpunkt S_{ABC} der Seitenhalbierenden im Dreieck $\triangle ABC$. - Sie dürfen den bekannten Satz benutzen: "Die Seitenhalbierenden teilen sich im Verhältnis 1:2."

(Ergebnis:
$$\mathbf{S}_{ABC} \left(\frac{4}{3} \left| \frac{4}{3} \right| \frac{7}{3} \right)$$
)



b) Geben Sie Ebenengleichungen für die Ebene \mathbf{e}_{ABC} in Parameterform und in Normalenform an. Zeigen Sie, dass \mathbf{S}_{ABC} Lotfußpunkt der Höhe der durch die 4 Punkte definierten Pyramide (mit \mathbf{D} als Spitze) ist.

c) Es gilt: $S_{ABD}(\frac{8}{3}|\frac{1}{3}|\frac{2}{3})$.

Bestimmen Sie den Schnittpunkt \mathbf{Z} der räumlichen Schwerelinien $\mathbf{S}_{ABD}\mathbf{C}$ und $\mathbf{S}_{ABC}\mathbf{D}$. Berechnen Sie unter Verwendung der Hesseschen Normalenform den Abstand des Punktes \mathbf{Z} zur Ebene \mathbf{e}_{ABC} .

Bestimmen Sie am Beispiel $S_{ABC}D$ das Teilungsverhältnis von Schwerelinien einer dreieckigen Pyramide. (Zwischenergebnis: $\mathbf{Z} \left(\frac{5}{2} | \frac{3}{2} | \frac{3}{2} \right)$)

d) Geben Sie eine Gleichung der Kugel \mathbf{k} mit dem Mittelpunkt \mathbf{Z} und dem Radius $\mathbf{r} = \mathbf{S}_{ABC}\mathbf{Z}$ an! Zeigen Sie, dass die Gerade $\mathbf{g}(D;M_{AB})$ die Kugel \mathbf{k} nur berührt und dass \mathbf{S}_{ABD} der Berührpunkt ist. Folgt aus dem Obigen eindeutig, dass die Ebene \mathbf{e}_{ABD} Tangentialebene der Kugel \mathbf{k} ist?

e) Bestimmen Sie eine Gleichung der Polarebene e_D zum Pol D bezüglich der Kugel k. - Die Polarebene e_D schneidet aus der Kugel k einen Kreis k_D aus $(k_D := k \cap e_D)$. Geben Sie den Mittelpunkt und die Größe des Radius dieses Schnittkreises k_D an!