Aufgabe 1: 2.Vorschlag

Nr	Erwartete Teilleistung / Lösung	Hj	AB	BE	er.	Erläuterungen / Kommentar
a)	$\vec{m}_{AB} = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} -1 - 3 \\ 1 + 2 \\ -1 - 4 \end{pmatrix} = \frac{1}{2} \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} ; \implies \vec{s}_{ABC} = \frac{1}{2} \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + \frac{1}{3} \cdot \begin{pmatrix} 2 - 1 \\ 5 + 0.5 \\ 4 - 1.5 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 4 \\ 4 \\ 7 \end{pmatrix}$	3	I	3		Einfacher Einstieg; eigentlich ma-F.
b)	$\mathbf{e}_{ABC}: \vec{\mathbf{x}} = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} + \mathbf{k} \cdot \begin{pmatrix} -4 \\ 3 \\ -5 \end{pmatrix} + \mathbf{c} \cdot \begin{pmatrix} -1 \\ 7 \\ 0 \end{pmatrix}; \mathbf{k}, \mathbf{c} \in \mathbb{R} ;$ $\begin{pmatrix} -4 \\ 3 \\ -5 \end{pmatrix} \times \begin{pmatrix} -1 \\ 7 \\ 0 \end{pmatrix} = \begin{pmatrix} 35 \\ 5 \\ -25 \end{pmatrix}; \implies \mathbf{e}_{ABC}: \vec{\mathbf{x}} \cdot \begin{pmatrix} 7 \\ 1 \\ -5 \end{pmatrix} = -1 ;$	3	Ι	5		Das Vektorprodukt ist unterrichtlich behandelt.
	$ \vec{S}_{ABP} = \begin{pmatrix} 6 - \frac{4}{3} \\ 2 - \frac{4}{3} \\ -1 - \frac{7}{3} \end{pmatrix} = \frac{2}{3} \cdot \begin{pmatrix} 7 \\ 1 \\ -5 \end{pmatrix} = \frac{2}{3} \cdot \vec{n} \implies S_{ABC} = F_{h} $	3	II	3		Hier ist natürlich auch der etwas aufwendigere Weg der Bestimmung des Durchstoßpunktes der Lotgeraden durch die Ebene möglich.
c)	$\mathbf{g_1} : \vec{\mathbf{x}} = \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix} + \mathbf{t} \cdot \begin{pmatrix} 1 \\ -7 \\ -5 \end{pmatrix}; \ \mathbf{t} \in \mathbb{R} ; \mathbf{g_2} : \vec{\mathbf{x}} = \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix} + \mathbf{r} \cdot \begin{pmatrix} 7 \\ 1 \\ -5 \end{pmatrix}; \ \mathbf{r} \in \mathbb{R} ;$ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_2} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_1} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_2} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_2} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_2} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_2} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_2} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_2} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_2} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_2} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_2} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} \cap \mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} : \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} $ $\mathbf{g_3} : \begin{cases} \lambda = 1 \\ $	3	I	4		
	$ \begin{vmatrix} \frac{1}{\sqrt{75}} \cdot \begin{pmatrix} 7\\1\\-5 \end{pmatrix} \cdot \frac{1}{2} \cdot \begin{pmatrix} 5\\3\\3 \end{pmatrix} = \frac{23}{2 \cdot \sqrt{75}} \; ; \implies d(Z; e_{ABC}) = \frac{25}{2 \cdot \sqrt{75}} = \frac{1}{6} \cdot \sqrt{75} = \frac{1}{4} \cdot \frac{2}{3} \cdot \sqrt{75} = \frac{1}{4} \cdot S_{ABC} $		II	4		Das Teilungsverhältnis von Schwerelinien ist unbekannt. Das Ergebnis wird bei Teil e) noch nützlich sein. Es überwiegt Niveau II.
d)	$\mathbf{k}: \left(\vec{\mathbf{x}} - \frac{1}{2} \cdot \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix}\right) \cdot \left(\vec{\mathbf{x}} - \frac{1}{2} \cdot \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix}\right) = \frac{25}{12} \; ; \; \mathbf{g}: \vec{\mathbf{x}} = \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix} + \mathbf{t} \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}; \; \mathbf{t} \in \mathbb{R} \; ;$		I	3		
	$\mathbf{k} \cap \mathbf{g} : \left(6 + 2\mathbf{t} - \frac{5}{2}\right)^2 + \left(2 + \mathbf{t} - \frac{3}{2}\right)^2 + \left(-1 - \mathbf{t} - \frac{3}{2}\right)^2 - \frac{25}{12} = 0 \iff \mathbf{t}^2 + \frac{10}{3} \cdot \mathbf{t} + \frac{25}{9} = 0 \implies \mathbf{t}_{1,2} = -\frac{5}{3}$ $\mathbf{B} \left(6 - \frac{10}{3} \mid 2 - \frac{5}{3} \mid -1 + \frac{5}{3}\right) = \mathbf{S}_{ABD}$	3	II	5		Die richtige Interpretation des Ergebnisses, dass der Wert der Diskriminante bei der Lösung der quadratischen Gleichung Null ist, ist in diesem komplexen Zusammenhang keine Reproduktion, insbesondere, weil Kugeln nicht besonders breit unterrichtlich behandelt wurden.
	Eine Tangentialebene besitzt nur einen Berührpunkt und es gilt: $\mathbf{g} \subset \mathbf{e}_{ABD} \to B$ ist "Berührpunkt" von \mathbf{e}_{ABD} an die Kugel \mathbf{k} ; \mathbf{g} könnte jedoch auch Tangente an einen Schnittkreis von Kugel und Ebene sein!		III	2		Der geometrische Gedanke, dass die Ebene noch den "Freiheitsgrad" hätte, sich um die Gerade zu drehen, ohne dass Widersprüche zu den Bedingungen aufträten, erfordert höchstes geometrisches Vorstellungsvermögen.

Aufgabe 1: 2.Vorschlag

e)	$ \overrightarrow{DZ} \cdot \overrightarrow{D'Z} = \frac{25}{12} ; \overrightarrow{D'Z} = \frac{25}{5 \cdot \sqrt{3}} = \frac{5}{6 \cdot \sqrt{3}}$ $\Rightarrow \overrightarrow{d'} = \frac{1}{2} \cdot \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix} + \frac{5}{6 \cdot \sqrt{3}} \cdot \frac{1}{\sqrt{75}} \cdot \begin{pmatrix} 7 \\ 1 \\ -5 \end{pmatrix} = \frac{1}{9} \cdot \begin{pmatrix} 26 \\ 14 \\ 11 \end{pmatrix} ; \mathbf{e_{D'}} : \overrightarrow{x} \cdot \begin{pmatrix} 7 \\ 1 \\ -5 \end{pmatrix} = \frac{1}{9} \cdot \begin{pmatrix} 7 \\ 1 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} 26 \\ 14 \\ 11 \end{pmatrix} = \frac{47}{3} ;$	3	III	5	Inversion an Kugel (Kreis) ist den Schülern bekannt. Dennoch werden hohe Qualifikationen in einem komplexen Sachverhalt gefordert: Abstand D-Z (Teilungsverhältnis Teil c)), Bestimmung von D´ über Betrag eines Vektors und Normaleneinheitsvektor, Ebenengleichung aus D´und Normalenvektor.
	Nach Pythagoras gilt: $r_D = \sqrt{\frac{25}{12} - \frac{25}{108}} = \frac{5}{3} \cdot \sqrt{\frac{2}{3}}$; $M = D' = \left(\frac{26}{9} \left \frac{14}{9} \right \frac{11}{9} \right)$		III	5	Da der Schnittkreis in der Ebene liegt (mit der Normalenrichtung als Symmetrieachse) ist D´ der Mittelpunkt. r _D fordert die Übertragung von Raum- in Ebenenvorstellung: Insgesamt für diesen Aufgabenteil: Anforderungsbereich 3.
				39	