

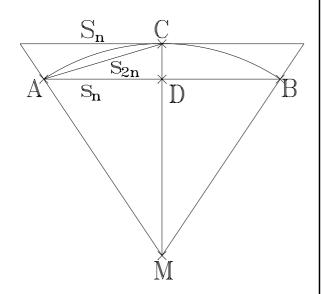
Einstieg in das Archimedische Verfahren:

Es gilt für das ein- und das umbeschriebene regelmäßige Dreieck:

$$s_3^2 = \left(\frac{1}{2} \cdot s_3\right)^2 + \left(\frac{3}{2} \cdot r\right)^2$$

$$\Leftrightarrow \quad \frac{3}{4} \cdot s_3^2 = \frac{9}{4} \cdot r^2 \quad \Rightarrow \quad s_3 = r \cdot \sqrt{3}$$

$$\Rightarrow \quad u_3 = 3 \cdot \sqrt{3} \cdot r \; ; \quad U_3 = 2 \cdot 3 \cdot \sqrt{3} \cdot r$$



Entwicklung einer Iterationsformel:

Es gilt bei Verdopplung der Eckenanzahl für die Länge der Sehne der einbeschriebenen regelmäßigen Polygone:

$$\begin{split} s_{2n}^2 &= (\overline{AD})^2 + (\overline{DC})^2 \\ &= \frac{s_n^2}{4} + (r - \overline{MD})^2 \\ &= \frac{s_n^2}{4} + \left(r - \sqrt{r^2 - \frac{s_n^2}{4}}\right)^2 \\ &= \frac{s_n^2}{4} + r^2 - 2 \cdot r \cdot \sqrt{r^2 - \frac{s_n^2}{4}} + r^2 - \frac{s_n^2}{4} \\ &= 2 \cdot r^2 - 2 \cdot r \cdot \sqrt{r^2 - \frac{s_n^2}{4}} \\ &= 2 \cdot r^2 - r \cdot \sqrt{4 \cdot r^2 - s_n^2} \end{split}$$

Es gilt für den Zusammenhang ein- und umbeschriebener Polygone:

$$\frac{S_n}{s_n} = \frac{r}{\overline{MD}}$$

$$\Leftrightarrow S_n = \frac{r \cdot s_n}{\sqrt{r^2 - \frac{s_n^2}{s_n^2}}} = \frac{2 \cdot r \cdot s_n}{\sqrt{4 \cdot r^2 - s_n^2}}$$

Offensichtlich gilt:

(1) $u_n < U_K < U_n$; (2) $u_{n-1} < u_n$ und $U_{n-1} > U_n$; (3) $U_n - u_n \to 0$ für $n \to \infty$

n	S _n	u _n	S _n	$\mathbf{U_n}$
3	1,73205081	5,19615242	3,46410162	10,39230485
6	1,00000000	6,00000000	1,15470054	6,92820323
12	0,51763809	6,21165708	0,53589838	6,43078062
24	0,26105238	6,26525723	0,26330500	6,31931988
48	0,13080626	6,27870041	0,13108693	6,29217243
96	0,06543817	6,28206390	0,06547322	6,28542920
192	0,03272346	6,28290494	0,03272784	6,28374610
384	0,01636228	6,28311522	0,01636283	6,28332549
768	0,00818121	6,28316778	0,00818128	6,28322035
1536	0,00409061	6,28318093	0,00409062	6,28319407

Die obigen, tabellarischen Näherungswerte (8 Nachkommastellen) beziehen sich auf einen Einheitskreis!

Es wird definiert: $U_K(r=1) =: 2 \cdot \pi$

Damit ist: $6,28318093 < 2 \cdot \pi < 6,28319407$ $3,14159047 < \pi < 3,14159704$

 $\pi \approx 3$, 141592653589793238462643383279502884197169399375105820974944592307816406286208 98356948556209921922218427255025425688767179049460

Eigentlich haben wir bei dem Nachweis, dass durch die Folge der Intervalle [u_n ; U_n] eine Intervallschachtelung definiert ist, etwas "geschlampt", denn wir haben nicht nachgewiesen, dass die Intervalllänge für immer größeres n beliebig klein wird.¹

Dieses Versäumnis soll nun nachgeholt werden. - In der nebenstehenden Skizze gilt:

$$AB = S_n$$
; $CD = S_n$; $\overline{AG} = 2$

Selbstverständlich sind A, F, B, G Punkte eines Einheitskreises um den Mittelpunkt M.

Begründe die folgenden Beziehungen:

(1)
$$k_n^2 = 4 - s_n^2$$

(2)
$$\frac{S_n}{s_n} = \frac{1}{\sqrt{1 - \frac{s_n^2}{4}}}$$

(3)
$$\frac{S_{n}}{s_{n}} = \frac{2}{\sqrt{4 - s_{n}^{2}}}$$

$$\frac{U_n}{u_n} = \frac{2}{k_n}$$

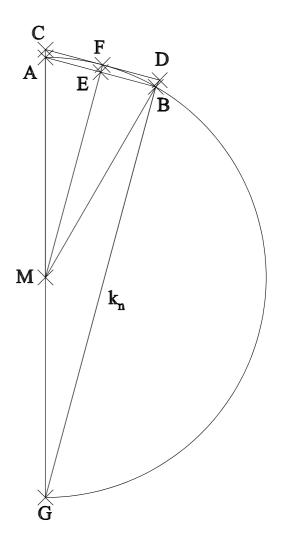
(5)
$$U_{n} - u_{n} = u_{n} \cdot \frac{2}{k_{n}} - u_{n} = u_{n} \cdot \left(\frac{2}{k_{n}} - 1\right)$$

Für immer größeres n nähert sich k_n der Länge des Durchmessers (2) und damit wird die rechte Klammer beliebig klein.

Wie man sich doch irren kann - Das Problem: "∞ · 0"

Der Schüler A. Made mault: "Wozu denn der ganze Aufwand mit der Intervallschachtelung. Die Annäherung von innen (durch Untersummen) reicht doch! - Die Sehnenlängen werden immer kleiner und damit werden wir automatisch immer genauer!"

Seine Nachbarin G. Pfiffig ist skeptisch und meint: "Das ist schon richtig; die Sehnenlängen werden immer kleiner, aber dafür werden es auch immer mehr! - Könnte es nicht sein, dass ?!"

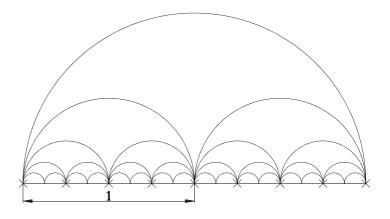


Außerdem haben wir die Eckenanzahl stets verdoppelt, so dass nicht jede natürliche Zahl als Eckenanzahl vorkommt.

Paradox oder nicht?

a) Bestätige, dass für die Umfangslängen der immer kleineren werdenden Halbkreise gilt:

$$U_1 = \pi$$
 $2 \cdot U_2 = \pi$
 $4 \cdot U_4 = \pi$
 $8 \cdot U_8 = \pi$
 $16 \cdot U_{16} = \pi$
..... = π



Bei immer feinerer Unterteilung wird durch die Summe der Halbkreise der Durchmesser approximiert. Also gilt:

$$2=\pi$$

- d.h. Umfang des Halbkreises und der Durchmesser des Kreises sind gleich groß!
- b) Für die Umfangslänge U des Viertelkreises gilt sicherlich:

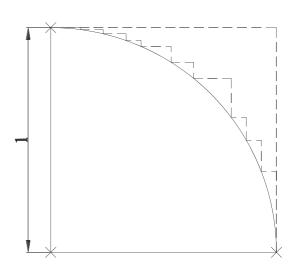
$$\mathbf{U} = \frac{\pi}{2}$$

Bestätige, dass für die Approximation U_T der Viertelkreislinie durch die gestrichelt gezeichneten (Treppen-) Linien stets gilt:

$$U_T = 2$$

unabhängig davon, wie fein man die Einteilung wählt. Daraus folgt unter dem Gesichtspunkt einer immer feineren Unterteilung:

$$\pi = 4$$



Fazit: Wenn man die Maßzahl des Kreisumfangs nicht (sauber) als innere Zahl einer Intervallschachtelung auffasst und (näherungsweise) bestimmt, so kann man zu erstaunlichen Widersprüchen gelangen! - Das Problem: "immer kleiner" aber dafür "immer größere Anzahl", schlampig gesprochen das Problem " $0 \cdot \infty$ " ist in der Mathematik ganz schön schwierig.